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The displacement effect of a sphere in a 
two-dimensional shear flow 

By I. M. HALL 
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(Received 22 December 1955) 

SUMMARY 
This paper contains a theoretical investigation of the 

displacement effect of a pitot tube in a shear flow. Viscosity is 
neglected throughout so that the vorticity field alone is considered. 

It is first shown that a two-dimensional approach does not 
produce a large enough displacement egect because it does not 
include the stretching of vortex tubes that takes place around 
a three-dimensional pitot tube. Then the three-dimensional 
problem is considered. A solution is obtained in the plane of 
symmetry for a sphere in a shear dow. This solution is found 
by making an assumption about the rate of stretching of vortex 
tubes perpendicular to the plane of symmetry and then considering 
the shear flow as a small perturbation of a uniform flow. A 
solution in the plane of symmetry is sufficient to obtain the displace- 
ment effect, which is found to be of the same order as the 
experimental result obtained by Young & .Maas (1936) for a 
conventional pitot tube. .The sphere may be considered to 
represent a conventional pitot tube (of slightly smaller diameter), 
so it is concluded that a large part of the displacement effect 
of a pitot tube may be accounted for without the inclusion of 
viscosity, i.e. by consideration of the vorticity field alone. 

To  a first approximation, the vorticity in the plane of symmetry 
is found to depend only on the distance from the centre of the 
sphere. 

An outline of shear flows past some two-dimensional bodies 
is given in an appendix. The bodies considered are a circular 
cylinder and a two-dimensional ' pitot-tube ' consisting of two 
parallel semi-infinite plates. 

1. INTRODUCTION 
Correct interpretation of the pressure measured by a pitot tube in 

a shear flow is important in the experimental study of boundary layers and 
wakes, whose velocity profiles are generally obtained from pitot traverses. 
The problem has been investigated experimentally by Young & Maas 
(1936) and their approach, outlined below, shows the nature of the problem. 
The corresponding theoretical problem is then discussed, and an approximate 
solution is obtained for a spherical ' pitot tube ', 
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The variation of total pressure across a wake, measured by a pitot tube, 
is shown in figure 1, together with the hypothetical curve which would 
be obtained using a tube of zero diameter. In effect, the pitot tube with 
its axis at B measures the total pressure at A. Hence, if the distance S 
were known, the actual distribution could be obtained from the measured 
one. The distance 6 must be a function of the shape of the pitot tube, its 
diameter D, the velocity and its derivatives, and the kinematic viscosity. 

s 

A 0  
\ 

DISTANCE ACROSS WAKE 

Figure 1. The variation of total pressure across a wake, showing displacement 
measured distribution ; effect due to finite size of pitot tube : 

actual distribution. - - _ - _ _  

Suppose now that the second and higher derivatives of the velocity are 
zero, or so small that they can be neglected ; i.e. the velocity of the oncoining 
flow is 

U +  Ay', (1.1) 

where U is the velocity on the axis of the pitot tube, and y' is a rectangular 
coordinate perpendicular to the axis. Then, if we consider only 
geometrically similar tubes, in an inviscid fluid, 

6 = function of D, U, A, (1.2) 
or, from dimensional considerations, 

function of K,  
6 
D -  
_ -  

AD 
2u 

K =  - 0  where 
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Using flat-nosed pitot tubes with internal diameters approximately 
equal to 0.6 of their external diameters, Young & Maas found that 

6 - = 0-18sgnK 
D (1.5) 

i.e. the displacement is towards the region of higher velocity. This result 
contains a difficulty at K = 0, where there is a discontinuity in the displace- 
ment effect. This is not physically plausible since it implies that there is 
a discontinuous change in the flow pattern when'the pitot tube is moved 
a small distance from a point of zero shear. However, the result obtained 
by Young & Maas is not necessarily valid near K = 0. Their values of 
6 / D  show increasing scatte; as K decreases, and no values were obtained for 
K less than 0.025. Also, when K is small, it is probably not always justified 
to  neglect second and higher derivatives of the velocity. Therefore, it is 
likely that the actual variation of 6/D with K is rapid, but finite, when K is 
very small, and that 6 /D tends towards some value, constant for a particular 
pitot tube geometry (0.18 for the shape of tube used by Young & Maas), 
at larger values of K. During recent work at Cambridge University, 
further experimental values have been obtained for the displacement effect 
which are in fair agreement with the Young & Maas result. 

So far, no theoretical treatment of a pitot tube in a shear flow has been 
made. Two classes of problems have been solved in which the oncoming 
flow has a uniform rate of shear : 

(a )  those in which the body is cylindrical and the whole flow is two- 
dimensional (Lamb 1932, p. 233, Lighthill, Reichardt 1954, Tsien 
1943) ; some of these solutions are outlined in an appendix ; 

(b)  those in which the body is cylindrical with generators perpendicular 
to the oncoming vorticity (Hawthorne 1954, Squire' & Winter 1951). 

Other solutions involving bodies in non-uniform streams have been 
obtained, but these are not relevant to the pitot tube problem (e.g. Nagamatsu 
1951, Hawthorne & Martin 1955). 

In  the completely two-dimensional problem, the displacement effect 
can be found easily, but 'it is considerably smaller than the experimental 
values obtained with an axially-symmetric pitot tube. This is not necessarily 
due to the omission of viscosity (Reichardt's experiments show very good 
agreement with inviscid theory) but is probably due to an essential difference 
between the vorticity fields in shear flows past two and three-dimensional 
bodies. Thus, consider a vortex tube moving towards the pitot tube. 
At a large distance upstream, the vorticity is everywhere perpendicular 
to both the velocity and the direction of the shear, so that a vortex tube is 
initially a cylinder with its generators perpendicular to the stream direction. 
When the flow is completely two-dimensional, the generators remain 
perpendicular to the stream, so that the cross-section of a vortex tube is 
deformed but its area is unaltered. Hence the vorticity is constant along 
any streamline. In front of a three-dimensional object, however, there is 
a retardation of the fluid, while at large lateral distances the flow is almost 



The displacement eflect of a sphere in a two-dimensional shearjow 145 

unaffected by the body. Therefore, the vortex tube must be stretched so 
that there is a decrease in cross-sectional area (by continuity) and hence an 
increase in vorticity (by Kelvin’s theorem). The net result is an accumula- 
tion of vorticity in front of the body and, in consequence, larger streamline 
curvatures than occur in the two-dimensional case. This makes possible 
a much larger displacement effect. For example, it is shown in thispaper 
that, when the vorticity of the oncoming flow is small, a sphere produces, 
according to certain approximate assumptions, a displacement approxi- 
mately five times as large as that produced by a cylinder of the same radius. 

Another feature introduced by the stretching of the vortex tubes around 
a three-dimensional object is a streamwise component of vorticity. In  the 
plane of symmetry, the velocity field of this component seems to be 
predominantly downwards, which would tend to increase the displacement 
effect. This feature is not accounted lfor explicity in the analysis of this 
paper, and would have to be taken into account in any attempt to improve 
the present theory. 

The three-dimensional problem is much more difficult, because the 
full equations are complicated and non-linear. However, the streamline 
reaching the stagnation point must always lie in the plane of symmetry, 
z = 0, so that a solution in this plane is sufficient to determine the displace- 
ment effect. The flow pattern in this plane is not independent of the rest 
of the flow pattern, but it can be shown to depend on one quantity only, 
namely (aw/az), = o ,  where w is the velocity in the z-direction. As a first 
attack on the problem, the equations of motion in the plane of symmetry 
are solved below by assigning an approximate value to (aw/az), o. Consider 
again a vortex tube moving towards the body. It is clear that the behaviour 
of the flow pattern in the plane of symmetry is governed by the rate of 
stretching of the vortex tube perpendicular to this plane. This quantity 
is the relevant component of the rate of strain tensor, i.e. aw/az. Therefore, 
it is necessary to know (aw/az), in order to solve the problem in the plane 
of symmetry. This is not possible without a full solution of the three- 
dimensional problem, so an approximate value is sought. Since the 
vorticity in the plane of symmetry is in the z-direction, it seems reasonable 
to assume that, in this plane, aw/& is independent of the vorticity. On 
this assumption, (aw/az), ,, must take its value in the irrotational flow. 

At this stage the problem is still non-linear : in fact, it involves the solution 
of three simultaneous partial differential equations. However, in practice 
the oncoming shear is often small, which suggests that linearization may 
be effected by considering the shear flow as a perturbation of the uniform 
flow. Since small shear corresponds to small K, a solution is sought in 
the form of a series in ascending powers of K. To be able to use this 
approach, it is necessary to know the solution when K is zero. This solution 
is not available for a pitot tube of conventional shape but only for bodies 
with closed, rounded noses. Therefore, since the solution for a sphere 
in a uniform flow is simple and well known (e.g. Milne-Thomson 1949, 
p. 413), an attempt has been made to obtain a solution for a sphere in a 
shear flow. 

F.M. K 
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If the sphere itself were used as a pitot tube, by making a small pressure 
hole on the axis, the definition of 6 as the displacement of the stagnation 
streamline would not have the desired physical meaning. The pressure 
measured would be the static pressure at the orifice, which is less than the 
total pressure on the stagnation streamline. However, a pitot tube of this 
type would be unsatisfactory because of its sensitivity to yaw. Instead, 
one may think of the sphere as replacing a conventional pitot tube of slightly 
smaller outside diameter, so that the streamline reaching the stagnation 
point is the same as the one reaching the stagnation point inside the pitot 
tube. Then the displacement effect of the sphere is defined in the same 
way as for an open body; i.e. the asymptotic distance of the stagnation 
streamline from the axis. The above argument is illustrated by the two- 
dimensional case (see the appendix) in which the displacement effects of 
a cylinder and a parallel plate pitot tube are equal when the diameter of the 
cylinder is 2/2 times the spacing of the plates. 

By expanding the full equations of motion in powers of K ,  it can be 
shown that the assumption for (aw/az), =,, gives the vorticity correct to 
the first order in K, but o&s an irrotational contribution to the velocity 
components. Unfortunately, this cannot be remedied without solving 
the problem for the entire three-dimensional flow pattern*. However, 
in order to obtain other than a linear variation for the displacement effect, 
results have been obtained up to the order of K3 using the above assumption 
for (aw/az), =,,. The cubic term produces a maximum value of 6/D which 
is of the same order as the asymptotic values found experimentally and 
which occurs within the possible working range of values of K. 

The result for the first approximation to the vorticity is of some interest 
since it shows that it is a function of the distance from the centre of 
the sphere only, and that it has a square root infinity on the surface. In fact, 
the first approximation is (1 - r3)--4* times the oncoming vorticity, where r 
is the distance from the centre of the sphere divided by its radius. 

The mathematical formulation of the problem, using the above 
assumptions, is given in $ 2, and the equations are solved in $ 3. The solution 
is summarized in $4, and the velocity components are obtained. In $ 5 ,  
differential equations for the streamlines are found and solved for the 
stagnation streamline. Outlines of some two-dimensional solutions are 
given in an appendix. 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

Consider a cylindrical coordinate system r', 8, x' with its origin at the 
centre of a sphere of radius a. The undisturbed flow is independent of z', 
so that z' = 0 is the plane of symmetry of the flow pattern, and is in the 
direction 6 = T (figure 2). Non-dimensional coordinates r ,  z, are defined 
as r'/a, z'/a. 

* Since this work was completed, Lighthill has solved the first order prablem 
over the entire flow field. He obtains the same order of magnitude for the displace- 
ment effect and for the downwash velocity ahead of the sphere. This increases 
one's confidence in the cubic term obtained in this paper. 
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In the plape of symmetry, the,vorticity components are (0, 0,C) and the 
Therefore, in velocity is (u, v, 0) where u and v are even functions of x. 

this plane, Helmholtz's equations of motion reduce to 

where 

The equation of continuity is 
1 a p u )  av - - + - = -  

Equations (2.1) to (2.3) are the same as those for a two-dimensional rotational 
flow except for the additional terms containing (aw/az),=,. If a value is 
inserted for (aw/az), = the problem is reduced, in effect, to a two-dimensional 

'I- P 

t-+ 
Figure 2. The plane of symmetry of the flow pattern. 

one, and the above equations are sufficient to determine u, v, and 5, provided 
that the boundary conditions are suitable. In  3 1, it was shown that a good 
approximation to (awjaz), = is its value in the irrotational flow. Therefore 
(Milne-Thomson 1949), 

(2.4) 
3 ucos e (:),=* = ~ 2r4 ' 

By means of the transformation 

K 2  
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equations (2.2) and (2.3) become 

where 

Thk oncoming flow is parallel and has uniform rate of shear. Hence, 
the boundary conditions are 

(a) at r = co, 5 = A, 

v = Usin O + Aar sin2B, 
u = 0. 

However, when A is zero, the solution is known (Milne-Thomson 1949, 
p. 413). Thus, satisfies the equations 

-U = UcosO+Aarsinecose, 

(b)  at r = 1, 

But this solution for + satisfies (2.6) when A is not zero." Hence the 
problem is reduced to that of solving (2.1) and (2.7) with boundary conditions 

(2.10) 1 (a) at r = co, 5 = A, 
ZJ = - i r2  sin28, 

# = constant. (b )  at r = 1, 
The solution is obtained by inserting expansions for 5 and 1c, in powers 

of K. These are * = *n+K*,+K2$,+ . . . , 

i 5 2 = 50+K5,+K252+. . . . (2.11) 

On substituting (2.11) in (2.1) and (2.7) two series of differential equations 
are obtained. These are 

Q2A = - 5,, (2.13) 

* It would not do so if the term of order K in (3w/3z), = were included. 
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where the functions gn are given by 

1 go = 0, 
(2.14) 

The boundary conditions are 

(2.15) i ( a )  at r = co, 5, = 1, t,bo = -4rZsin28, 

5, = 0, +n = 0, (n # O ) ,  

( b )  at r = 1, +,hn = constant. 

In $3, equations (2.12) and (2.13) are solved for n = 0, 1, and 2. First, 
equation (2.12) with n = 0 is solved to obtain the first approximation to the 
vorticity. This is substituted in (2.13) to  obtain the first approximation 
to t,b. Then, substituting back in (2.12) with n = 1, the second approxima- 
tion to the korticity is found. This is inserted in (2.13), and so on. 
Physically, this corresponds to finding first the vorticity field obtained by 
convecting initially constant vorticity along the irrotational streamlines, 
and then the velocity perturbations caused by this vorticity field. On 
substituting back into (2.12), the vorticity field that is convected along the 
perturbed streamlines is found. Then the further velocity perturbation 
is obtained, and the process is continued until the desired approximation is 
reached. 

3. SOLUTION OF THE DIFFERENTIAL EQUATIONS 

The general solutions of equations (2.12) and (2.13) are found below 
and then the special solutions satisfying the boundary conditions (2.15) 
are determined. 

Substituting from (2.9);equation (2.12) is 

The general solution of (3.1) is the sum of a particular integral, which 
depends on g,, and the complementary function q, which is the solution 
of 

( 3 4  
3 cos e 

-COS% 1 - -  - +sin% I + -  - = - ( : 3 ) 2  . ( ,l,3)r$ 2r4 77. 

Changing the independent variables from r ,  9 to r, x, (3.2) becomes 

-cos% (1 - $)(2)x +{ -cos% ( 1  - ;)g + 
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Therefore, if x is an integral of 

e.g. 

rd8 
sin 0( 1 + 4 ~ 3 )  ' 

- - dr 
- cos e( 1 - t - 3 )  

r3- 1 1/2 x = (?) sine, 

equation (3.3) reduces to 
3 

whose solution is 

(3.4) 

(3.5) 

where j is an arbitrary function, determined by the boundary condition. 
Equation (2.13) is 

v2*, = - 5  n- (3.8) 
This is a Poisson-type equation whose general solution is the sumofa 
particular integral, depending on c,, and the complementary function, 
which is independent of 5,. The latter is a solution of Laplace's equation 
in two dimensions, and is 

+ao + (3.9) 

where a,, b,, c,, d,  are constants determined by the boundary conditions. 

m 
[(a,  rn + b,  rn)cosn8 + (c,  r" + d ,  t-%)sin no], 

1 

First approximation to the vorticity 

complementary function alone, given by (3.7), i.e. 
go is zero. Therefore, when n = 0, the solution of (3.1) is the 

Since 5, = 1 at r = m, 

Therefore, 
j(x) = 1. 

r3- 1 

(3.10) 

(3.11) 

(3.12) 

This equation shows that, to a first approximation, 5 is ind6pendent of 0. 
This is because, for the particular case of irrotational flow past a sphere, 
u and (aw/i3z), =.o have the same variation with 8. This can only occur 
when the body can be represented by a doublet at the origin, since this is 
the only case in which the velocity potential is the product of two terms, 
one of which is a function of 0 only and the other is independent of 8. 

Equation .(3.12) also shows that the vorticity becomes infinite on the 
sphere. This is to be expected from the previous considerations regarding 
the stretching of a vortex tube. In fact, the vorticity must become infinite 
on any body with a stagnation point. 
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First approximation to t) 

Substituting (3.12) in (3.8) gives 

A particular integral is Y, where 

(3.13) 

(3.14) 

To ensure convergence of the integral as r --f co, (3.15) is rewritten as 

(3.16) 
d Y  
dr 

r - = - +r2 + jrm (."'2(9 - 1)-1/2- x> dx. 

Integrating again, 
Y =  -&ra-Q,  

where 

or, reversing the order of integration, 

(3.17) 

(3.18) 

(3.19) 

-4r-l asr-+oo.  (3.20) 

The solution of (3.13) is the sum of Y and the complementary function 
(3.9). Hence, applying the boundary conditions (2.19, 

lCl0 = 3 ( r 2 -  1 i ) c 0 ~ 2 0 - p - Q .  

Second approximation to 5 
Substituting (3.12) and (3.21) in (2.14) gives 

g, = gi(r)sin 0 cos 0, 

(3.21) 

(3.22) 

where g; = - ;+/2(+ - 1 ) ( ~ 3  - 1)-3'2. (3.23) 

Therefore, when n = 1, a particular integral of (3.1) is Z(r)sin 0, where 

(3.24) 

1.e. z =  - -  Firm x-1/2(x4 - l)(x3 - 1)-5/2 dx (3.25) 

- - I T 2  as r + 30. (3.26) 
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The solution of (3.1) is 

where x is given by (3.5). Then, since f;, = 0 at Y = 00, 

Ax) = 0, 

and 5, = Z(r)sinB. 

Second approximation to t,h 
Substituting (3.29) in (3.8) gives 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

A particular integral is R(r)sin B, where 

= -2. (3.31) 

It is convenient, both for algebraic manipulation and for computation, to 
consider the integrals R, and R,, where 

f zZ(x)  dx (3.32) 
dR 
dr r .  
d R  R, = r -  + R = - r  
dr 

Integrating by parts, (3.32) becomes 

R , = r - - R =  - -  x 

(3.33) 

The double integrals on the right hand sides of (3.32) and (3.33) can be 
reduced to single integrals. 

where d(Z/x) /dx is known from (3.24). From (3.26), 
d Z  &(-.) - gx-4 as x +  co. 

(3.34) 

(3.35) 

Therefore, subtracting 312 from the integrand to ensure convergence, and 
adding 3i-/2 outside the integral, 

~ ~ ' ~ ~ ~ ( ~ ) d 3 e =  d Z  3 H  $ -  &, 
(3.36) 

x 7 I 2 ( ~  - l ) (x3 - 1)-6'2 - l} dx. (3.37) 
H = - \  3 "  { where 

Similarly, 
2 .  r 

R, = - ir2Z- $rG, (3.38) 

3 w  where G = - 2 . 7  [ x3'2(x4- l)(."- l)-5/2 dx. (3.39) 
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A s r - t w ,  
G N Z T ~ ,  
H - $+. 

Therefore, as r --f 00, 

(3.40) 

(3.41) 

(3.42) 

The function #I1 is the sum of Rsin8 and the complementary function 
(3.9). 

+l = { R - ?)}sin + +a, + 

This solution cannot satisfy the boundary condition at infinity for any 
values of a,, c,. However, the part of the flow pattern in which deviation& 
from the upstream conditions would be expected to be important is a strip 

Since t,!~ must be constant on r = 1, 
a3 

{a,(rm - r-m)cos ne + c,(rm - r")sin no>. 
I 

(3.43) 

lyl = IrsinBI<k, (3.44) 
where k is finite. In principle, the complete flow pattern could be obtained 
by joining three solutions ; the present one in the strip lyl< k, and two 
solutions for Iy l> k which would have to be found by another method. 
However, since the outer flows would be very nearly parallel, and would 
have little effect on the inner flow neary = 0, if k were taken to be largeenough, 
it should be sufficient to satisfy the boundary condition at infinity in the 
strip I y )  < k only. In  this strip, the boundary condition is satisfied if 
a,, c, are zero for all n, i.e. if 

= { R- %))sin r 0 

N - -  Y asr -m.  
2r 

Third approximation to 5 
The equation for g, may be written in the form 

g, = gk(r)cos 8 +gg(r)sin28 cos 0, 

where g, = gr4Z-  r-1Z ++-1/2(r3- 1)-3/*, 

g; = ( r -  ?) 1 d l  - ( r  + f) 

When n = 2, a particular integral of (3.1) is 
X(r)  + Y(r)sin28, 

where 

(3.45) 

(3.46) 

(3.47) 

(3.48) 
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-(l& 1 dY +2(1+& 1 Y  =,,Y+g,". 3 

Hence, solving these equations, 

where 

(3.49) 

(3.50) 

Y = r1/2(r3 - l)1/2Yl(r), (3.51) 

(3.52) 

y1 = j m ~ / 2 ( x 3  - 1)-3i2g7x) dx. (3.53) 

X N  2 P Y  (3.54) 
Y - 4r'. (3.55) 

r 
A s r - t c o ,  

Therefore, the solution of (3.1) for <,, satisfying c2 = 0 at r = a, is 
5, = X(r)  + Y(r)sin20. (3.56) 

Third approximation to a,b 
Substituting (3.56) in (3.8) gives 

A particular integral is 
X(r) + T(r)cos 20, 

where I d  dS ;&) = -x--- ; Y, 

(3.57) 

(3.58) 

(3.59) 

Integration of (3.58) gives, after manipulation similar to the previous cases, 

(3.60) S =  -*.-I {(X+QY)x+i)log ; d ~ .  

The integration of (3.59) is carried out in the same manner as the integration 
of (3.31). 

T ("> 
OD 

Two integrals, Tl and T,, are defined by 
dT 

Tl = r -  -2T, 
dr 

dT 
T 2 = r - + 2 T .  dr 

(3.61) 

These are found to be 
00 

T~ = ~ r + ~ + l o g r - r - Z ~  { + $ ~ - i x - + + > & ,  (3.62) 

(3.63) 

1 

T ,  = - &r2 ITm x-lY dx 
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- R  

0.5000 
0.4999 
0.4994 
0.4980 
0.4953 
0.4909 
0-4841 
0-4745 
0.4609 
04413 
0.4089 

Hence, as r --f 00, 

--s T 

03 03 
2.2005 0.8358 
1.2540 0.4329 
0.8373 0.2908 
0.6320 0,2274 
0.5108 0.1917 
0.4319 0.1691 
0.3773 0.1532 
0-3378 0-1401 
0.3081 0.1268 
0.2818 0.1077 

(3.64) 

Y 

0~0000 
0.0501 
0.1011 
0.1556 
0.2177 
0.2947 
0-3999 
0-5617 
0.8573 
1.6112 

m 

Again, it is not possible to satisfy the boundary condition at infinity for 
all values of 8. However, the solution satisfying the condition t+42 = 0 
at infinity in the strip Iyl < K, as well as the condition 4, = constant on 
Y = 1. is 

-2 

0~0000 
0*0050 
0.0202 
0.0464 
0.0859 
0.1436 
0.2295 
0-3659 
0.6133. 
1.2219 

03 

(3.65) 

- 2  a s r - t m .  
Y3 

4. THE VELOCITY FIELD 

The results of 5 3 are summarised below : 

5 = coo + KC,, sin e + K ~ c , ,  + K~c, ,  cos ze + o ( K ~ ) ,  (4.1) 

+ PY,, cos e + K ~ Y ~ ~  cOs ze + O(KS),  (4.2) 

z 
t,h = Yo, + Yo2 cos 28 + KYl ,  sin 8 + K2Y2, + 

where 

520 = x+ &Y, 

Yo, = -*r2-Q, 

522 = -8Y, 

y 2 0  = s, 
Y '  

The integrals Q, R, S, etc. have been evaluated and are givea in table 1. 

(4.3) 

0 *o 
0.1 
0 -2 
0.3 
0 *4 
0-5 
0.6 
0.7 
0.8 
0.9 
1 .o 

Q 

0~0000 
0.0500 
0.1003 
0.1502 
0.2006 
0.2515 
0.3032 
0.3562 
0.4114 
0.4701 
0.5377 

- X  

0~0000 
0~0000 
0.0003 
0*0014 
0.0047 
0.0125 
0-0341 
0.0821 
0.2038 
0.6450 

m 
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The velocity components u and ZI are obtained from (2.5), (2.9) and (4.2), 
in the forms 

U - - - (1 - r3)cos 8 - 2Kr1Ybz sin 26 + K2r1Yll cos 6 - 
U -  

- K3{r-1Yz1 sin 8 + 2r1Yss sin 28) + O(K4), (4.4) 

i7= v 
(1 + &-3)sin 6 - K r% + - dyozcos28)-  dr 

- KZ- dyll sin e - K3{ 2 + '2 cOs e + 5 cos 28 + o ( ~ 4 ) .  (4.5) 
dr dr 

The velocity is always finite, and this suggests that the series (4.4) and 
(4.5) converge when K is small enough. 

The position of the stagnation point is easily found from ( 4 4 . .  On r = 1 

- = 1.5000 sin B - K{0.3505 + cos 28) + 0.9667K2sin 8 + U 
V 

+ ~ y 0 . 5 2 6 2  - 0.6667 cos e + 0 . ~ ~ 2 4  cos 29) + o(~4). (4.6) 

Put y = rsind. (4.7) 

Then, if ys is the value of y at the stagnation point, 

ys = KYlS + P Y 3 ,  + 0(KS), (4.8) 

and'equation (4.6) gives 

0 = K( 16OOOy1, - 1.3505) + 
+ K3( 1 . 5 0 0 0 ~ ~ ~  + 2~OOOOyl, + 0.9667~5, + 0.41 19) + O(K5), (4.9) 

whence yls = 0.9004, 1 
ya8 = -1.9357. 5 

5. STREAMLINES AND DISPLACEMENT EFFECT 

The streamlines are integrals of the equation 

Substituting from (2.5), this can be written 

(4.10) 
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or, using (2.9), 

K d $ =  - 2r sin 0 d {( 1 - f)r2sin20} (5.3) 

where (5.4) 

Using y and Y as independent variables, (5.3) can be written 

a* a* 1 ap 1 ap 
ar aY 2y ar 2y ay K - d r + K - d y =  - - dr+- -dy, 

1.e. 

which is a differential equation for y as a function of r along a streamline. 
Now, # can be expanded in the form 

# = #oo+#02Y2+K#llY+..., (5.7) 

where the i,btj's can be found by comparison with (4.2). 
that on a streamline 

Then, assuming 

Y = YO(4 + Ky,(r) + *.. 9 (5.8) 

a series of linear differential equations for y,(r) is obtained. 
are 

These equations 

where no = 0, 1 

i . . . . . . . . . . . . . . . . . . .  

The solutions of (5.9) are 

yo = cop-1/2, 

(5.10) 

(5.11) 

y .  = -p-l/2 IFrn p-liZn, dr + Ci P - I ~ ~ .  (5.12) 

It can be seen that (5.1 1) is the equation for the streamlines in the irrotational 
flow, as would be expected from (5.8). 
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r 1 

The streamline reaching the stagnation point is of particular interest 
since it gives the displacement effect. On this streamline, 

- 

I I I I 1 

yo = y z  = y4 = ... = 0. (5.13) 
Hence 

a*oo 
ar n l =  -, 

J ....................... 
Since yi must be finite when r = 1, the coefficient of p-lI2 in (5.12) must be 
zero, i.e. 

Hence 

00 

Ci = 1 p-lI2ni dr. 
1 

(5.15) 

(5.16) 

2 (0 

0 . 5  

I 

Figure 3. The stagnation steamline, y(r) = Ky,(r) +K3ya(r) + o(K6). 

Using (5.14), the functions yi may now be evaluated. 
and y3 are shown graphically in figure 3. 

The results for y1  

The displacement, 6, of the stagnation streamline at infinity is given by 
6 
- = ~ y , ( m )  + + o(~5) (5.17) 
a 

= 1.2400K- 1*1752K3+ O(K5). 
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The variation of 6/2a with K is shown in figure 4. It can be seen that the 
displacement effect found in this investigation is of the same order of 
magnitude as the experimental result of Young & Maas. The gradient of 
8/2a with K,  when K is small, is somewhat less than would be desired for 

I 

0.2 0.4- 0.6 

k 
Figure 4. The displacement effect of a sphere : (a) first approximation neglecting 

O(KS) ; (b)  next approximation neglecting O(K6) ; (c)  experiment, flat-nosed 
pitot tube. 

good agreement with experiment. However, as indicated in $1, the 
displacement effect of a sphere is probably the same as that of a pitot tube 
of smaller diameter. Therefore, the initial gradient of 6/2a would be 
expected to be larger for a conventional pitot tube than for a sphere. 

It may be concluded from the above results that the major part of the 
displacement effect of a pitot tube in a shear flow may be accounted for 
without the inclusion of viscosity; i.e. the vorticity field is of prime 
importance. 

This work was done while the author was at the Fluid Motion Laboratory, 
University of Manchester. The author wishes to thank Professor M. J. 
Lighthill for suggesting the problem and for his continued interest and 
advice during the preparation of this paper. 
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APPENDIX. SHEAR FLOW PAST TWO-DIMENSIONAL BODIES 

The flow pattern around a two dimensional body in a flow with constant 
rate of shear A is defined by a stream function # which is a solution of 

V2# = -A,  (A- 1) 
subject to the condition that # is constant on the surface of the body 
(e.g. Milne-Thomson 1949, p. 108). Since t,b is constant on any streamline 
the displacement 6 of the stagnation streamline is obtained directly from 
the value of 4 on the surface of the body. 

Solutions of (A. l), and hence 6, are given below for a circular cylinder 
and for a parallel plate pitot tube. 

(a) The circular cylinder 
The centre of a circular cylinder of radius a is taken as the origin of 

coordinates r ,  8, and the undisturbed flow has velocity U +  Ar sin 8 in the 
direction 8 = n-. The stream function for this flow is (Lamb 1932, Tsien 
1943, Reichardt 1954) 

4 = - tA(r2-a2)+aA y2 - -- cos28- U r -  - sine. (A. 2) ( S) ( ar2) 
Since # is zero on the cylinder, the displacement 6 is the value of rsin8 
for which # is zero at infinity, so that 

iAa2 - SAa2 - U6 = 0. (A. 3) 
Hence 

- 4K as K+O. (A. 5 )  
The negative square root has been discarded in (A. 4) because 6 must be 
zero when K is zero. 

An interesting deduction about the stagnation streamline can be made 
from (A. 2). The term - $Aa4r-2cos 28 represents the effects of the image 
vorticity inside the cylinder, which tends to deflect the oncoming flow 
downwards. But the doublet term Ua2r-lsin 8 tends to deflect the flow 
away from the axis. Hence, the stagnation streamline is the one on which 
these effects balance, i.e. the one on which 

The variation of 6/2a with K is shown in figure 5. 

Ua2 Aa4 - sin8 - - cos28 = 0. 
Y 4Y2 

Therefore, if 8 is always small on the stagnation streamline, the latter is 
straight and parallel to the axis at a distance Y sin 8 from it, where 

a 
- sin0 = $K, 
r 

in agreement with (A. 5).  
from (A. 2). 

This result can also be obtained mathematically 
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(b) The parallel-plate pitot tube 
This idealized pitot tube consists of two semi-infinite flat plates at 

y = k c, stretching from x = 0 to x = co, with no net mass flow between 
the plates (cl. Lamb 1932, p.' 75). The undisturbed flow has velocity in 
the positive x-direction. 

K 

Figure 5. The displacement effect of two-dimensional bodies : (a) parallel plate 
pitot tube, distance 2a apart; (b)  circular cylinder; (c) experimental result 
for flat-nosed axially symmetric pitot tube. 

Let the stream function be #o when A is zero, where aj0 is zero on the 
Then, in the general case, surface of the body. At infinity, t,b0- Uy. 

the stream function is 
4 = # O + W  (A. 8) 

The displacement 6 must satisfy the equation 

whence 
US + +A(S2 - c2) = 0, 

!! = K-l(-1+2/(1+K2)) (A. 10) 

- 4 K  asK+O.  (A. 11) 
Comparison of (A. 9) with (A. 3) shows that, for identical oncoming flows, 
the displacement effect of the cylinder is equal to that of the parallel plate 
pitot tube when 

c 

a 
c = 1 / 2 9  (A. 12) 

i.e. when the diameter of the cylinder is d 2  times the spacing of the plates. 
F.M. L 
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Figure 5 shows that 812. always increases with K and only reaches 
0-18 when K = 0-83. Since the highest value of K used in the experiments 
of Young & Maas was 0.3, this solution does not afford an explanation of the 
displacement effect. 

The above analysis is only slightly modified when the two-dimensional 
pitot tube is of arbitrary shape, provided that it consists of two parallel plates 
at infinity. In  this case, the 
stream function is 

(A. 13) 

These are at a distance 2c apart as before. 

$ = $0 + b4Y2 + $1, 

where $o is the stream function when A is zero, and is an irrotational 
stream function included to satisfy the boundary conditions. But, on the 
body, t,hl can differ from -+A2 over a finite region only. Hence it must 
always take this value on the body, and the displacement effect is the same 
as before. 
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